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Summary. Many neurones are extremely invaginated and pos- 
sess branching processes, axons and dendrites. In general, they 
are surrounded by a restricted diffusion space. Many of these 
cells exhibit large, slow potential changes during the passage of 
current across their membranes. Whenever currents cross mem- 
branes separating aqueous solutions, differences in transport 
numbers of the major permeant ions give rise to local concentra- 
tion changes of these ions adjacent to the membranes, which will 
result in various electrical and osmotic effects. These transport 
number effects are expected to be enhanced by the presence of 
membrane invaginations. Dendrites are equivalent to reversed 
invaginations and there should be significant changes in concen- 
trations of permeant ions within them. In general, the effects of 
such changes on the electrical response of a cell will he greater 
when the concentration of a major permeant ion is low. The 
effects have been modelled in terms of two nondimensional pa- 
rameters: the invagination transport number parameter fl and the 
relative area occupied by the invaginations 6A. If these two pa- 
rameters are known, the magnitudes and time course of the slow 
potential changes can immediately be estimated and the time 
course converted to real time, if the length of the invaginations 
(Q and ionic diffusion coefficient (D) within them are also known. 
Both analytical and numerical solutions have been given and 
predictions compared. It is shown that in the case of large cur- 
rents and potentials the analytical solution predictions will un- 
derestimate the magnitudes and rates of onset of the voltage 
responses. The relative magnitude of the transport number effect 
within the invaginations (or dendrites) and other transport num- 
ber contributions to slow potential changes have also been as- 
sessed and order-of-magnitude values of these are estimated for 
some biological data. 
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tions �9 dendrites �9 restricted diffusion space �9 slow potential 
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Introduction 

Whenever currents pass across cell membranes, the 
existence of differences in the transport numbers of 
ions (i.e. the fractions of current carried by ions) 

between membranes and the adjacent solutions, will 
produce local changes in concentration adjacent to 
the membranes, which will result in various electri- 
cal and osmotic effects. The only uncertainty in any 
biological situation is the magnitude of the effect. It 
has already been shown that, in the presence of 
applied electrical currents, transport number effects 
can give rise to significant slow changes in the volt- 
age response (and hence in 'apparent membrane 
conductance'), very large changes in 'apparent 
membrane capacitance' and significant local os- 
motic water flows across membranes. These effects 
have been predicted and demonstrated in unstirred 
layers adjacent to cylindrical plant cells and planar 
segments of cell walls (Barry & Hope, 1969a,b); 
planar sheets of epithelia (Wedner & Diamond, 
1969; Noyes & Rehm, 1971) or reconstituted lipid 
membranes (Smith, 1977) and ion-exchange mem- 
branes (e.g. Dewhurst, 1960; Lakshminarayanaiah, 
1967; Segal, 1967; Neher & Lux, 1973; MacDonald, 
1976). For details, see recent reviews (Barry, 1983; 
Barry & Diamond, 1984). Other examples of ion 
depletion and enhancement effects during electrical 
activity near membranes of nerve and muscle cells 
have been considered in a symposium (Orkand, Ni- 
cholson, Ortiz, Almers, Morad, and Eisenberg in 
Orkand, 1980), 

It has been shown that the large, slow decrease 
in conductance measured in response to small-to- 
medium hyperpolarizing current or voltage pulses 
(magnitude ~< 30 mV) in skeletal muscle fibers is 
also due to transport number effects (Almers, 1972; 
Barry & Adrian, 1973). In this case the transport 
number effects result in a decrease in K + concentra- 
tion within the transverse tubular system (TTS) of 
muscle, which acts as an unstirred region with a 
relatively large membrane area and small volume 
within the muscle. In addition to the time-depen- 
dent decrease in conductance in response to con- 
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stant current or voltage pulses, these effects should 
also give rise to a very large 'apparent capacitance' 
in muscle in response to sinusoidal currents at very 
low frequencies (e.g. 24 to 28/~F �9 c m  -2  at 0.01 Hz; 
Barry, 1977). This would help to explain some of 
the discrepancies between experimental and pre- 
dicted values of skeletal muscle impedance ob- 
served in the 1 to l0 Hz range by other workers 
(Valdiosera, Clausen & Eisenberg, 1974). 

Many cell membranes are highly invaginated, 
particularly, for example, membranes of many neu- 
rones such as those of a nudibranch mollusc (Mirolli 
& Talbott, 1972) or of Aplysia (Coggeshall, 1967; 
Graubard, 1975). The invaginations are similar to 
the TTS of skeletal muscle in that they provide un- 
stirred regions of relatively large surface area and 
small volume. These cells are also known to exhibit 
slow potential changes during long current pulses 
and it is therefore of value to model the local 
changes in concentration, and hence the slow po- 
tential changes that would be expected to take place 
as a result of transport number effects under these 
conditions. 

Such transport number effects have been postu- 
lated for K + accumulation in membrane invagina- 
tions of the R15 cell of Aplysia, to account for slow 
potential changes in that cell during long depolariz- 
ing current pulses (Eaton, 1972). As expected from 
such a mechanism, Eaton was able to show experi- 
mentally that either increasing the external concen- 
tration of K + or adding tetraethylammonium (TEA) 
to block potassium conductance reduced these slow 
potential changes, bringing the steady-state voltage 
changes close to the 'instantaneous' values. There 
also seemed to be some correlation between the de- 
gree of invagination, as observed morphologically, 
and the magnitude of the potential changes. 

It may readily be seen that dendrites are exactly 
equivalent to reversed invaginations. They will be 
especially important in cells with low concentra- 
tions of permeant ions. One possible candidate 
would be calcium, which is at a very low concentra- 
tion ( 10  -7  t o  10 -8  M, e.g. Kostyuk, 1981) within cells 
and yet which can in some circumstances carry a 
significant fraction of the membrane current. For 
example, an inward current would increase internal 
calcium. This could reduce the currents by either 
reducing the driving force on calcium or directly 
reducing the calcium conductance and may thus 
help to explain the slow 'inactivation' properties of 
such calcium currents observed in some circum- 
stances, which are less pronounced in situations in 
which calcium is buffered and held low by a calcium 
chelating agent (cf. Tsien, 1983). 

Although neuronal examples of invaginated 
membranes most readily come to mind, this present 

treatment should be equally applicable to any invag- 
inated epithelial cells or perhaps even to concentra- 
tion changes within the lateral intercellular spaces 
between epithelial cells. 

The aim of this paper has been to model such 
transport number effects as a function of nondimen- 
sional membrane parameters, so that when these 
parameters are estimated, the magnitudes and time 
course of the voltage changes can easily be calcu- 
lated. Because of the more general nature of the 
approach and the greater ease of analysis, the ef- 
fects will be modeled for a planar invaginated mem- 
brane. The results should be readily applicable to 
cells of any shape and to concentration changes in 
either invaginations or dendrites. In addition to the 
main model presented in this paper, which pertains 
to transport number effects occurring within mem- 
brane invaginations, the role of three other trans- 
port number situations will also be discussed and 
the relative magnitude of their contributions as- 
sessed and compared with transport number effects 
within invaginations. These other transport number 
effects relate to: (1) changes in the average concen- 
tration of the ions within the cell interior; (2) 
changes in the average concentration of the ions 
within a restricted diffusion region surrounding a 
cell and (3) changes in the interface concentration of 
the ions in an unstirred region surrounding a cell. 

Principles Underlying Transport Number Effects 

The transport number effect (see Barry & Hope, 
1969a; Barry & Adrian, 1973; and also Dewhurst, 
1960) is illustrated in Fig. 1A. The basic principles 
can be most readily appreciated by considering the 
following example in which a cation-permeable 
membrane separates two solutions containing only 
K + and C1-. In the two KCI solutions shown, the 
transport numbers tK and tc~ (representing the frac- 
tion of current carried by each ion are given, re- 
spectively, by u~CK/(uKCK + uclCc0 and uclCcl/ 
(uKCK + uclCc0 where u and C refer to mobility and 
concentration, and subscripts K and CI to K + and 
C1- ions, respectively) for both K + and C1- will be 
approximately 0.5. In the cation-permeable mem- 
brane, however, tK will be approximately 1.0 and tcl 
will be approximately zero. This means that when- 
ever a current is passed across the membrane, for 
example from right to left in Fig. 1A, there will be 
an equal loss of both K + and C1- ions in the solution 
at the right side of the membrane. The rate of loss or 
gain of KCI, ~KCL, for a current of i A �9 c m  -2 ,  will 
be given (Barry & Adrian, 1973) in tool" cm -2" 
sec -1 by 
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Fig. 1. Panel A is a schematic diagram illustrating the transport number effect for a simple cation-selective membrane separating two 
equal KCI solutions, somewhat similar to Fig. 1 of Barry and Hope (1969a) and Fig. 23 of Barry and Diamond (1984). tK and tcj 
represent the transport numbers of K + and CI- ions, respectively, the magnitude and direction of their contribution to the current i,,, 
being indicated by the length and orientation of the arrows. These transport number discrepancies at each membrane-solution interface 
give rise to KCI depletion and enhancement in unstirred layers 6" and 6' in the solutions on each side of the membrane. Ch and C,,, 
represent the KCI concentrations in the bulk solution (assumed to be perfectly stirred for the ideal case) and at the solution side of the 
mixture-solution interface. This effect gives rise to a concentration difference of electrolyte across the membrane AC,,, which results in 
a time-dependent potential difference and the possibility of a local osmotic waterflow (not shown). Such concentration effects will be 
opposed by solute diffusion between this region and the bulk solution. Panel B represents the transport number effect for a cell within 
an invaginated membrane system. Using relative ionic concentrations, which are somewhat representative of a neurone (actually 
obtained from squid axon data; Bullock, Orkand & Grinell, 1977, p. 132, with mobilities from Robinson & Stokes, 1965) transporl 
numbers for the three major permeant ions K +, Na + and C1- were estimated to have the values (rounded-off to the accuracy shown) 
indicated below each of the three compartments--the interior solution, the membrane itself and the exterior solution together with any 
invaginated regions. On each side of the membrane the relative concentration changes should be approximately as indicated--the 
magnitude of the changes within the invaginated region being much greater than in the interior solution. It may readily be seen that for 
an inward current ira, as shown, in response to a hyperpolarizing pulse there will be a drop in K + within any invaginated region, which 
will be paralleled by both a drop in CI- and an increase in Na +. In this example, the relative changes in K + will be greater than for Na + 
and C1- and these changes will be in such a direction as to reduce the driving force on the K + ions (see also Fig. 2) 

( t ~  - t ~ ) i  ( t ~ l  - ~cl)i 
q5 ~:c~ - - ( 1 ) 

F F 

where superscripts m and s refer to the membrane 
and solutions, respectively,  and where F is the Far- 
aday. It should be noted that Eq. (1) automatically 
preserves electroneutrali ty and that the loss or gain 
in KC1 will tend to be balanced primarily by diffu- 
sion within the unstirred layers (to or from the bulk 
solution) 1. This perturbation of  the local salt con- 
centrations on either side of  the membrane will give 
rise to a diffusion potential which will slowly in- 

In the case of a fairly 'leaky' membrane (e.g. an ion- 
exchange membrane with significant external salt concentra- 
tions) it may also be significantly balanced by back-diffusion of 
KCI across the membrane. This could occur even though t~, >> 
t~'l, if the membrane's solute permeability PKo is significant in 
comparison with <3. DKo, where 6 is the unstirred layer thickness 
(see Barry & Hope, 1969a). For most biological cell membranes 
back-diffusion may generally be neglected. 

crease to a maximum during the passage of current 
across the membrane.  This t ime-dependent in- 
crease in membrane potential, in the same direction 
as the IR voltage jump, will masquerade as a time- 
dependent  increase in membrane resistance and as 
a capacitance. The local salt gradient across the 
membrane will also result in a local osmotic volume 
flow, which may be mistaken for electro-osmosis, 
were it not for the relatively slow onset of these 
transport  number  effects under most conditions 
(Barry & Diamond, 1984). When the concentrations 
of  perturbed electrolyte are different on both sides 
of a membrane,  the relative changes in concentra- 
tion will be greatest at the low concentrat ion side 
and for large currents will be significantly greater 
when there is depletion rather then enhancement of 
salt at that side. 

In a more typical biological case, for a cell with 
a low anion permeabili ty and an ion distribution 
similar to that seen in neurones and axons, the 
transport  number  changes will be as illustrated in 
Fig. lB. In the external solution, which normally 
has a low K + concentrat ion the current will mainly 
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Fig. 2. Panel A is a schematic diagram of an invagJnated mem- 
brane, somewhat similar to Fig. 29 of Barry and Diamond (1984). 
It shows an area of surface membrane with a number of invagina- 
tions (normal or reversed-dendrites), which are assumed for sim- 
plicity to be cylinders of length C and radius a. Current ii (as 
indicated in Panel B) is divided between that going through each 
invagination i,, and that going through the surface membrane i~,,. 
i,, is then distributed along the length of the invagination as 
indicated, the current density iK entering the cell across a region 
of the invagination 8x at distance x is considered to be primarily 
carried by K*. Panel B is a schematic diagram of the electrical 
circuit of Panel A illustrating the current distribution between the 
surface membrane resistance r,,, and the membrane resistance rm 
across the wall of the invagination. The emf's  eK shown are 
meant to represent the change in K + equilibrium potential, for 
example, due to K + depletion in the invagination during hyper- 
polarizing pulses, which will oppose the driving voltage so reduc- 
ing the driving force producing the current iK 

be carried by both Na + and C1-. In the membrane, 
the current will primarily be carried by K + and 
within the cell, because of the presence of a high 
concentration of large immobile or impermeable or- 
ganic anions, the current will tend to be carried 
mainly by K + and to a small extent by e l -  and Na § 
The concentration changes, again balanced primar- 
ily by diffusion will be as shown in Fig. lB. Since 
membrane potentials are normally mainly deter- 
mined by the major permeant ions, the main ionic 
concentration change that needs to be considered is 

the K + concentration change at the external mem- 
brane-solution interface. 

Furthermore, these changes in salt gradient and 
resulting diffusion potential components will always 
be in the direction opposite to the applied voltage, 
so that even in a planar membrane system, this will 
reduce the driving force and hence the magnitude of 
the current across the membrane. For a nonuniform 
membrane system, such as an invaginated mem- 
brane, the membrane current density will become 
least where transport number concentration 
changes are maximal. For constant current pulses, 
especially, this results in a redistribution of the cur- 
rent from these regions to those with the smallest 
concentration changes. This means that the effec- 
tive area over which current is flowing has been 
reduced, thereby increasing the overall resistance. 

Description of the Model 

For simplicity it will be assumed that an invaginated 
cell membrane can be treated as a planar sheet with 
invaginations that can be approximated as cylin- 
ders, but which need not be straight. Obviously, the 
planar sheet analysis is, in principle, equally appli- 
cable to dendrites, which are simply reversed invag- 
inations. However, if there is a large number of 
dendrites in a small cell, the finite size of the unstir- 
red interior compartment will mean that the follow- 
ing analysis will underestimate the magnitude of the 
concentration changes and hence potential changes. 
The model will be assumed to be as illustrated in 
Fig. 2A with the electrical circuit as shown in Fig. 
2B. Since the most significant local concentration 
change will occur within the invaginations, the anal- 
ysis is applicable to a membrane of any shape, pro- 
vided that the membrane space constant is long in 
comparison with the dimensions of the cell and that 
the external solution is approximately equipoten- 
tial. On the other hand, it will apply to a spherical 
cell of any size provided that the internal electrodes 
are reasonably centrally placed within the cell. In 
addition, there is no loss in generality in considering 
cylindrical invaginations, provided that the diame- 
ter of the invagination is small in comparison with 
its length. The model will therefore be applicable to 
a biological cell membrane with tortuous invagina- 
tions. 

The resulting changes in membrane potential 
and apparent conductance will be calculated for 
constant current pulses. In principle, the analysis 
can be readily modified to investigate the response 
to constant voltage pulses, or to a sinusoidal cur- 
rent, for low-frequency impedance analysis. 

The basic principles of the effect are as follows. 
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If a constant current i, is applied across the cell 
membrane, some of the current ism crosses the sur- 
face membrane while the rest io goes across the 
membrane of the invaginations. Because of the rela- 
tively larger area of the invaginated membrane re- 
gion, it will generally make the major contribution 
to the membrane conductance. Provided that the 
invaginations have homogeneous membrane prop- 
erties, a reasonably low luminal resistance and a 
uniform ionic composition within them at the onset 
of the current pulse, the current density should be 
initially constant along the length of the invagina- 
tion. After a short time, the transport number 
effects would result in a change in local ionic con- 
centration within the invaginations. These con- 
centration changes would be opposed primarily 
by diffusion into (out of) the invaginations when the 
ion concentrations are being depleted (enhanced) 
there. The concentration changes would be maxi- 
mal at the closed-end of the invaginations and mini- 
mal at the open-end. As already mentioned, these 
concentration changes are in the opposite direction 
to the applied voltage, and hence will maximally 
reduce the driving force and membrane current 
deep within the invaginations. In the constant cur- 
rent situation, this will force more current across 
that part of the invaginated membranes near their 
open-ends and across the surface membrane itself, 
whereas in the constant voltage case it will simply 
decrease the overall current. 

Both analytical and numerical analyses will be 
undertaken. In each case it will be assumed that 
over the range of driving forces considered, the 
membrane conductance is constant and indepen- 
dent of driving force. 

In order to simplify the equations for the time- 
dependent analytical treatment two further assump- 
tions will be made: (1) that the luminal resistance of 
the invaginations is small so that the potential drop 
within the lumen is small and (2) that the relative 
concentration changes A C / C  are not too large so 
that lOge(1 +- AC/C)  ~ +-AC/C. 

For the analytical steady-state treatment the 
first assumption above can be relaxed and for the 
numerical analysis neither assumption is required. 

Theory 

A planar membrane region of the type shown in Fig. 
2A will be assumed in which there are n cylindrical 
invaginations of length ~' cm and radius a cm per 
cm 2 of surface membrane. The following treatment 
is also equally applicable with minor modification 
( see  footnote 3) to wide, thin membrane invagina- 
tions or infoldings. In both cases, a total hyperpo- 

larizing current i, across 1 cm 2 of surface area of a 
cell, will have two components: i, .... the current 
density, across the surface membrane and nio, the 
sum of all the currents going down the n invagina- 
tions. For simplicity at this stage, it will be assumed 
that the membrane is uniform so that 

Gsm = Gm = l/R,,, (2) 

where G,m and Gm are the ionic conductances of 1 
cm 2 of surface and invaginated membranes, respec- 
tively, and Rm the resistance of 1 cm 2 of membrane. 
For purposes of discussion it will be assumed that 
the major permeant ion is K +, but it should be real- 
ized that the principles apply also to any other ma- 
jor permeant ion, particularly if it also has a low 
absolute concentration within the invagination or 
dendrite. From the above 

i, = i.~,, + ni,,. (3) 

Within a volume element of thickness 8x and down 
an invagination at a distance x from the surface, the 
potassium current density & across the membrane 
of the invagination will cause a decrease in concen- 
tration C = C(x) of K +. This will be opposed by 
diffusion and is given by 

OC 2iK 02C 
at - a F  + D Ox--~_ (4) 

where t . . . .  t ~', the transport number difference be- 
tween the lumen of the invagination and its mem- 
brane has been approximated as 1.0 (cp. Fig. IB), F 
is the Faraday and D is the diffusion coefficient of 
the ion (in this case K +) partially diffusing with CI 
and partially exchanging with Na § along the lumen 
of the invagination. The K + current density iK at 
distance x can be related to the driving force on K 
and hence to both the voltage across the invagina- 
tion and the potassium concentration gradient by 

iK = -G, , , (AV, , ,  - V(x) - - 
nT C(x) t 
T In -fiT-,, / (5) 

where Co is the concentration of K + initially within 
the invaginations and in the external solution 
throughout the time course of the pulse. 2~V,,, repre- 
sents the c h a n g e  in membrane potential from the 
resting potential and V(x) the potential within the 
invagination (with respect to the external solution), 
just as (RT /F)  In C(x)/Co represents the c h a n g e  in 
the potassium equilibrium potential. The potential 
drop down the lumen of the invaginations will be 
given by 
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OV 
- i(x)/(~a2Gl) (6) 

Ox 

where i(x) is the current down an invagination at 
distance x and GL is the luminal conductivity. If G~ 
is large enough then OV/Ox ~ 0 and the lumen may 
be considered to be approximately isopotential. 

In addition, provided [C(x) - (Co)]/Co ~ 1 then 
Eq. (5) may be linearized to 

iK ~ - G m  [ A Vm - V(x) + ~ -  (7) 

The error resulting from this approximation will 
be maximal down the invagination where [AV,, - 
V(x)]F/RT may eventually approach AC/Co. In fact, 
generally }AC/Co] ~ ]AV,,F/RT]. For example, if 
AVm ~ I mV then IAC/Col < 0.04. A value of 0.040 
for AC/Co results in ]log[(C - AC)/Co][ ~ 0.0408, 
indicating only a 2% error for the current in that 
part of the invagination. This has been quantita- 
tively checked by comparison with the numerical 
analysis values (see Numerical Analysis section for 
further details) and is illustrated in Fig.7 for three 
different amplitude currents. For AVm = 1 mV the 
actual error in the voltage AVm is only 1.4% (com- 
pare curves b & c of Fig. 7). 

Within the limits of this linear approximation, a 
symmetrical response will be predicted for depolar- 
izing and hyperpolarizing currents, with a corre- 
sponding depletion or enhancement of K + within the 
invaginations. From the principle of charge conser- 
vation along the invagination, we also have that 

1 0 i  
iK -- 2Tra Ox (8) 

where i is the longitudinal current flowing down the 
invagination at distance x. Hence, integrating all 
along the length of the invagination, the total cur- 
rent entering it will be given by 

" 

i,, = 27ra iKdX. (9) 
) 

In addition, the boundary conditions are 
(i) C =  Co a t x = 0 f o r a l l t .  
(ii) C = Co for all x when t = 0. 
(iii) OC/Ox = 0 a t  x = ~. 
Condition (i) represents the fact that the invagi- 

nation with its small volume opens out suddenly 
into a much larger volume, so that to a first approxi- 
mation this external volume will behave as a per- 

fectly stirred solution reservoir 2. For a large num- 
ber of invaginations, and especially dendrites in a 
small cell, this assumption will tend to cause an 
underestimate of the magnitude of these transport 
number effects. Condition (ii) assumes that there 
has been enough time between current pulses for 
the concentration of K + within the invagination to 
relax to its initial uniform value which is the same as 
that in the external solution. Condition (iii) reflects 
the internal end of the invaginations being closed. 

T I M E - D E P E N D E N T  SOLUTION 

(WITH I N F I N I T E  L U M I N A L  CONDUCTIVITY)  

In order to solve the time-dependent equations it 
will be assumed that the conductivity of the lumen 
of the invaginations is high enough so that they may 
be considered to be equipotential. As will be shown 
in the next section this is a reasonable assumption 
for physiological solutions provided transport num- 
ber effects are not too great. 

The total current it entering the cell is given by 

it = nio - A W m / R m .  (10) 

It will be shown in Appendix A that the solution to 
these equations in dimensionless units, giving the 
relative change in membrane potential due to trans- 
port number effects, is given by 

V( T ' ) /A  V(O) = - A Vm/1R,*~ 

= (1 + 6A)[Al(fl) + A2(c~,fl)e (~z-#)r' 

+ ~ A2(io6n,fi)e -(~'2m+~)r'] 
m = l  

(11) 

where R*~ the combined membrane resistance of the 
surface and the invaginations for 1 cm 2 of surface is 
related to Rm and Gm by 

Rm 1 
R*~ - - -  - (12) 

1 + 8A Gin(1 + 8A) 

and where T' is the time in dimensionless units re- 
lated to real time t by 

T' = Dt/~]. (13) 

Al(fl) is given by 

2 An access resistance condition can be incorporated into 
these equations by changing condition (i) to OC/Ox = h(C(O) - C,,) 
where C(0) is the concentration just within the invagination at x 
= 0 and V(0) = ionr~ where r~ is the total access resistance per 
cm 2 of  surface membrane and h = l/(n~a2rsGL) where GL is the 
conductivity of the lumen of the invaginations. 



P.H. Barry: Transport Number Effects in Invaginated Cells 227 

1 
Al(/3) (14) 

1 + aA (tanh Vfi)/V-fi 

where the transport number parameter/3 is defined 
by 3 

fl -= 2GmRTe2/(aF2CoD)" (15) 

6A, representing the area of the invaginated mem- 
brane for 1 cm 2 of surface membrane, is given by 3 

8A = 27rnaf. (16) 

A2(0:,/3) is given by: 

0:2 

A2(0:,/3) ~- (0:2 __ /3)[Z1(0:) + Z2(0:) t a n h  0:1 (17) 

where the value of 0: is given by the root (if it exists) 
of 

tanh 0: 
a2 + 8A [0:2 + /3  \ ~ l ) ]  = 0 (18) 

with the condition that 0:2 < /3. 

8A " fl 
ZI(0:)-= 1 + 8A + 20:2 

8A "/3 0: 
Z2(0:) -= ~- (1 + 8A) 20:3 - -  (0:2 + I) .  

Similarly, for each value of m, A2(iam,fl) is given by 

2 
O/rn 

A2(iam'fi) =- (a2n + fi)[Zl(iam) + iZ2(iam) t a n  O/m] 

where the 0:m are the roots of 

tan 0: m 
a~,~+ SA [0:2m - /3\  --am 1)] = 0  

0:m 8A �9 /3 
iZ2(i0:m)=---~-(1 + 8A) + ~ ( 1  - 0:2m). (24) 

For large values of m it may be shown that 0:m ~ 
mTr/2. When T' ~ ~ the steady-state value of 2XVm/ 
IR*, AV(~)/AV(O), is given from Eqs. (11) and (14) 
by 

AV(oc) AVm AVm(1 + aA) 
~v(o) IR,* 

1 + S A  

Rm 

1 + aA(tanh ~/-fl)/~/fi 
(25) 

As a check that no 0: or aj roots had been missed, 
and that there has been no error in the analytical 
equations derived in Appendix A (see also discus- 
sion in section on Numerical Analysis and Appen- 
dix C), AVm/IR,* can be calculated for T' = 0, in 
which case -AVm/IR,* = 1 so that 

(I  + 6A) IAI(/3) + A2(0:,fl) 
~e 

+ ~ Ae(ia,~,fi)] = 1.O. 
m=l 

(26) 

(19) In the calculations used for this paper this was nor- 
mally satisfied to well within I part in 105, even 

(20) when the steady-state value of -AVm/1R,* was 
greater than 30. The root of Eq. (18) was obtained 
using a combination of a traversing technique and 
Newton's  method, whereas the roots of Eq. (22) 
were obtained using Newton 's  method alone. Ana- 
lytical calculations were all done in double preci- 

(21) sion using Fortran 1V on an LSI-11 microprocessor 
(Digital Equipment Corporation, Maynard, Massa- 
chusetts). 

(22) 

and where with i = ~ i - ,  Zl(i0:m) and iZ2(i0:m) are 
defined as 

6A �9 fi 
Zl(i0:m) ~ I + 6A 20:2 (23) 

and 

3 For wide thin membrane invaginations or infoldings 
(widlh w, thickness dand length e, where d ~ w) the treatment is 
identical except that then 2~'a should be replaced by wd and a/2 
by d in the equations so that/3 = G,.RT eZ/(dF2C<,D) and 6A 
nwdC 

STEADY-STATE SOLUTIONS 

(FINITE LUMINAL CONDUCTIVITY) 

For the general finite luminal conductivity case, 
which is analyzed in terms of nondimensional pa- 
rameters in Appendix B, the voltage drop down the 
invaginations dV/dX will be given by Eqs. (B3), (B7) 
and (B9). The final voltage response AV(~)/2xV(O) 
may be given [Eq. (B26)] by 

A V ( ~ )  1 + 8 A ( t a n h  ~ f i - O ) / X / ~  

AV(0) - 1 + 8A(tanh V ~ 7 ) / ~  7 (27) 

where/3'  is defined by 
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Fig. 3. The t ime-dependent  slow potential changes, caused by 
transport number depletion or enhancement  of ions (e.g. K +) 
within invaginated regions of  a membrane,  during constant cur- 
rent pulses and calculated using the analytical equations. 
AVm(T')/AVm(O) represents  the increase in the membrane poten- 
tial after time T' expressed in nondimensional units relative to its 
instantaneous (neglecting true capacitance transients) value. The 
nondimensional time T' may be converted to real time using the 
relationship t = (~2T'/D [Eq. (32)]. The values shown were calcu- 
lated using Eqs. (11)-(25) for a relative area of invaginations 6A 
[Eq. (16)] of  10 and for various values of  the nondimensional 
transport  number/3 [see Eq. (15)] as indicated. The dashed line 
(equivalent to /3 = 0) represents  the voltage response in the 
absence of  transport  number effects. Note the increase in re- 
sponse with/3 and the decrease in the time to reach steady state 
(shown more clearly in Fig. 4) 

/3' ---/3(1 + o)  (28) 

and 0 and/30 by 

0 = DF2Co/RTGL (29a) 

/30 = 2Gme2/aGL. (29b) 

For small values of O,/3' ~ / 3  and tanh "@-@X/-~ 
1 and Eq. (27) reduces to Eq. (25). Larger values 

of O in part serve to increase the magnitude of the 
effective transport number parameter. For typical 
values of physiological solutions (D = 1.5 x 10 5 
cm z �9 see -I, C,, = 5 x l 0  -6  mol �9 cm 3, GL = 10 -2 

S �9 cm J) O ~ 0.03 and represents a 3% correction 
to/3. As may be noted from inspection of Eq. (29a) 
although O is independent of invagination geometry 
BO is not and increases as/3 increases. For/3 = 10 
and O = 0.03, (tanh @ ) / X / ~  = 1.088, which 
results in an overall correction of about 8-9%. 

N U M E R I C A L  ANALYSIS  

In order to produce an exact solution of these trans- 
port number equations, which would justify (and 

determine the limitations of) the linear logarithmic 
approximation and would further readily allow an 
investigation of the response at the end of a current 
pulse, a numerical analysis was undertaken as out- 
lined in Appendix C. For comparison with the linear 
logarithm approximation [Eq. (7)] the numerical 
analysis gave results which were well within 0.05% 
of the analytical values (using 50 elements and a 
0.0002 time step). 

The numerical analysis is readily able to handle 
both the current-on and current-off voltage re- 
sponses. In the case of the linear logarithm approxi- 
mation it can easily be shown that the on and off 
responses are exactly symmetrical (e.g. Fig. 7). In 
other words describing the on response at any time 
T' after the beginning of the current pulse [see Eqs. 
(11-26)] by 

~XV(T') 
zxv(0) - -  - 1 .0 + F ( ~ ) [ 1  - f ( T ' ) ] .  (30) 

The off response is then simply 

A V ( T '  + T") 
AV(O) - F ( ~ ) f ( T " )  (31) 

wheref(O) = 1 andf(~) = O, F(w) is the steady-state 
magnitude of the transport number contribution and 
T" represents the time after the turn-off of a long 
current pulse of length T'. In both equations AV(O) 
represents the voltage response at the beginning of 
the current pulse. The numerical analysis also indi- 
cated the magnitude of the deviation of the voltage 
response when the exact logarithm expression is 
used for different values of AV(O)F/RT and this is 
shown in Fig. 7. 

T h e o r e t i c a l  P r e d i c t i o n s  

In order to make the analysis as general as possible, 
the equations and predicted figures have all been 
calculated using dimensionless parameters. In order 
to assess a particular response, the relative area of 
the invaginations and the transport number parame- 
ter need to be evaluated from Eqs. (16) and (15). 
The half-time Tj/2 and the general time parameter T' 
may then simply be transformed to real time t val- 
ues using 

t = f 2 T ' / D  (32) 

and 

tv2 = feTI/2/D. (33) 

Figure 3 shows the voltage response AVm(T' ) /  
AVm(O) (=-- -AV,~/IR*m in Eq. (11)) for a constant 
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Fig. 4. The half-time Tin in nondimensional units for the slow 
potential changes, caused by transport number depletion or en- 
hancement of ions within invaginated regions of a membrane, 
during constant current pulses calculated using the analytical 
equations. This is shown for three different relative areas of 
invagination 6A  (Eq. (16)) as a function of the nondimensional 
transport number parameter fi [Eq. (155]. The nondimensional 
half-time T(~z may be converted to a real half-time tm by using the 
relationship t]/2 = f2T[ /z /D [Eq. (335]. It may be seen that T i e  

asymptotes to a value of about 0.27 for very small values of/3 
(close to the value of 4/rr 2 In 2 -= 0.28 calculated from the time 
constant due to the first root of Eq. (22) alone for small values of 
/3). Note also that T'm decreases very rapidly with/3 for values 
greater than about 5.0. TI/2 was calculated numerically by deter- 
mining the value of T' at which (AV,,,(T') - 1)/(AV,, ,(~) - 1) - 
0 5. As discussed in the text and Fig. 7 these analytical values 
will only significantly overestimate T[~,_ for very large currents 

current  pulse in the presence of  transport number 
effects after time T' ,  relative to its value at zero 
time before transport  number effects could increase 
the magnitude of the voltage response. These 
results are shown as a function of transport number 
parameter /3  for a value of 8A = 10. It may be seen 
that this slow voltage response rises to a maximum 
steady-state level which increases with the magni- 
tude of/3,  a value of/3 = 0 being equivalent to no 
transport number  effects or perfectly stirred invagi- 
nations. It may be seen that the voltage response for 
T'  = t is hardly distinguishable from the infinite 
value. Fur thermore  the half-time for the response 
which is determined to a very good approximation 
by the first time constant [i.e. T'I/2 ~ 0.693r, where ~- 

~V,,,(| 

•Vm(O) 

0 0 . 0 1  ~ = i = i 
0 . 1  1 1 0  1 0 0  1 0 0 0  

8A 

Fig, 5. The steady-state amplitude of the slow potential changes 
caused by transport number depletion or enhancement of ions 
within membrane invaginations during constant current pulses 
and calculated using the analytical equations..3V,,,lx)/A~,,,(O) 
represents the increase in membrane response at infinite time (T" 
= ~) relative to its instantaneous value (T' ~ 0L The instantane- 
ous value is the same as that in the absence of transport number 
effects (,8 = 0). This is shown for a nondimensional transport 
number parameter/3 (Eq. (1555 of 10 as a function of the relative 
area of the invaginations 8A (Eq. (1655. Note that as (5A increases 
above 100, the amplitude of the slow voltage response saturates 

1/(a 2 - / 3 )  (if a exists) or 1/(c~ +/3) (if o: does not 
exist)] in Eq, (11) is seen to decrease as/3 increases. 
This is shown more clearly in Fig. 4 where T'~/,_ has 
been obtained numerically from Eq. (I I) for differ- 
ent values o f /3  and three different values of 6A. 
Note that for /3 < 0.5 and 6A > 10, T'E,~ ~ 0.27. 
However ,  as/3 increases much beyond 2, TI/2 begins 
to decrease radically. T'v2 however,  increases 
slightly in this region as 6A increases. 

Figure 5 shows the steady-state voltage re- 
sponse compared to its instantaneous value (T'  = 
0). This instantaneous value i s  identical to the re- 
sponse in the absence of transport number effects 
(i.e./3 = 0) as indicated in Fig. 6. From Eq. (11) 

,5 V,,,(~) 
AV,, ,(0)  - (1 + 6A)Afffi). (34) 

For very large values of 6A (SA --~ ~), the relative 
area of the membrane invagination, substituting for 
Aft/3) from Eq. (14) 

AVm(~) 
~vm(o) ---- ~ coth x/-fi (35) 

so for a value of/3 = 10, as in Fig. 5, this asymptotes 
to a saturating value of  approximately 3.17. 

Actually for/3 > 10, 

avm(~) /av. , (o)  ~- x/ f t .  (36) 
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Fig. 6. The main panel shows the steady-state amplitude of the 
slow potential changes as AV,~(~)/AV,~(O), as depicted in Fig. 5, 
as a function of transport number parameter/3 for various values 
of relative invagination area 6A and calculated using the analyti- 
cal equations. Note that for a fixed value of 6A it saturates for 
large values of fi, the level to which it saturates increasing with 
8A. The inset shows that as for very large values of/3 (/3 ~ 2), 
the magnitude of the slow voltage response continues to increase 
with ~3A 

For a fixed value of 6A the voltage response also 
asymptotes as /3 is increased, as shown in Fig. 6. 
For very large values of/3 (/3 ~ oo) 

mVm('~ ) 
- -  = 1 + 8 A  (37) 
AVm(O) 

as indicated in the inset to Fig. 6. 
Figure 7 shows both the current-on and current- 

off voltage responses, calculated using the full nu- 
merical analysis. For the two linear approximations 
(or for low current values) the current-on and cur- 
rent-off responses are exactly symmetrical [see 
Eqs. (30) & (31) and curves b and d in Fig. 7]. For 
larger values of current, using the exact logarithm 
expression, the symmetry of the two responses is 
not so precise. In addition, larger values of current 
also increase the magnitude of the transport number 
effects and accelerate its rate of onset. However, 
this decrease only becomes significant at very large 
currents. For example, even for AVm ~ -20 mV, 
Tj/2 has only decreased to 0.13 from its zero current 
value of 0.14, whereas for AVm ~ -40 mV it drops 
rather more significantly to 0.09. For the very large 
values of current (e.g. curve f in Fig. 7), the per- 
meant ion concentrations within the invagination 
will be depleted to almost zero. As the analysis 
stands this will tend to result in an overestimate of 
both the magnitude and rate of onset of the trans- 
port number effects. This will occur because the 
transport number of the permeant ion in the invagi- 
nated membrane will start to decrease when its con- 

centration begins to approach close to zero (i.e. 
when AC ~ Co). For example, from Eq. (5) when 
AVm ~ -20 mV then the maximum depletion 
(which will produce zero current) will be given 
when AC/Co ~ 0.55 and when AVm ---- -40 mV, AC/ 
Co ~ 0.79. This dependence of transport number on 
the absolute concentration of the permeant ion has 
not been allowed for in the analysis. 

Other Transport Number Contributions to Slow 
Voltage Changes 

Transport number effects can contribute to slow 
time-dependent potential changes, resulting from 
changes in concentration of the dominant permeant 
ion, in three additional ways. These are: (1) changes 
in the average concentration of the ions within the 
cell interior; (2) changes in the average concentra- 
tion of the ions within a restricted diffusion region 
surrounding a cell and (3) changes in the interface 
concentration of the ions in an unstirred region sur- 
rounding a cell. The dependence of these transport 
number contributions on appropriate membrane 
and geometric parameters will now be estimated 
and their relative magnitude compared with those 
resulting from effects arising in membrane invagina- 
tions. 

AVERAGE ION CONCENTRATION CHANGES WITHIN 

CELL INTERIOR 

Such ion concentration changes satisfactorily ex- 
plain the very large and slow potential changes dur- 
ing hyperpolarizing current pulses in mammalian 
muscle fibers. In this situation, the transport num- 
ber effects predict and appear to give rise to a very 
significant depletion of C1 within the muscle (Barry 
& Dulhunty, 1984). 

For a small spherical cell of radius r, in which 
the pulses of duration t seconds are long enough so 
that diffusional equilibration takes place within the 
cell interior (i.e. t >> r2/D) the change in potential 6V 
can be estimated. This can be done, as follows, for 
the most permeant ion, which will generally con- 
tribute most to the membrane potential 

RT oAC 
8V ~ )-ff In Co zFCo (38) 

where Co is the initial internal concentration of the 
ion and AC is its change (e.g. a decrease inside a 
cell, with a similar equation for an increase outside 
a cell) after a current pulse of magnitude i with the 
assumption that AC/Co ~ 1. Now after t seconds 
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c~t it 
AC ~ (39) 

zFU 

where U is the cell volume and O~ t = tm - t~ is the 3 
transport  number  difference for the particular ion 
between its value in the membrane and in the cur- > 
rent electrode.  In this case, if the specific mem- -~ 2 
brane conductance in the absence of transport num- ;_ 
ber effects is Gm (S �9 cm-2), the applied voltage is 
AV and the cell surface area is A then the current i 1 
will be related to ~V by 

i = GmA AV. (40) 0 

From Eqs. (38) and (39) for a monovalent  ion 

RTc~tit 
6V ~ F2UC------~o (41) 

Since U = 47rr3/3, Eq. (41) can be re-expressed as 

3R Te~, it 
8V ~ F24~r3Co (42) 

and hence substituting for i from Eq. (40), since A = 
47rr 2, we obtain the relative increase in potential re- 
sulting from transport  number  effects compared to 
the potential change in their absence 

8V 3RTatGmt 
- -  ~ ( 4 3 )  
A V F2rCo 

These effects become significant when 6V/~V ap- 
proaches or exceeds 1.0. As we have already seen, 
transport  number  effects in membrane invagina- 
tions also become significant as the transport num- 
ber parameter  for the invaginated membrane/3  ap- 
proaches or exceeds 1.0. Therefore  for an 
order-of-magnitude calculation the relative contri- 
butions of these two effects Rj from Eqs. (43) and 
(15) is given by 

(S V/A V) 3e~taDt 
R, - ~ -  2rf2 (44) 

If  t is long enough, so that R~ > 1, changes in the 
average internal composit ion of the cell will pro- 
duce the most significant contribution, whereas if t 
is short enough, so that Rj ~ 1, then transport num- 
ber effects in the membrane invaginations will pre- 
dominate. 

d 

. /  

I I 

3 4 

Fig. 7. The time-dependent slow potential changes V(T')/V(O) 
[equivalent to 2XVm(T')/AVm(O) in the text] caused by transport 
number effects in invaginated membranes during and following 
constant current pulses and calculated using the numerical analy- 
sis described in the text. Curves (b-f) were calculated with a 
relative invagination area 8A = 10 and transport number parame- 
ter/3 = 10, using 50 elements and a step size of 0.0002. The 
dashed rectangular curve (a, equivalent to/3 = 0) represents the 
voltage response in the absence of transport number effects. The 
two dotted curves (d and b) were calculated using the linear 
logarithmic approximation of Eq. (7). Curve d with O = 0 (repre- 
senting a high conductivity in the lumen of the invaginations) 
gave identical values (within 0.04%) with those calculated using 
the analytical treatment for the onset of the current pulse [Eqs. 
(12)-(25)] and shown in Figs. 3-6. Curve b (below curve d 
throughout its time course) was calculated with O - 0.03 [see 
Eq. (2%)], to represent typical physiological solution values. 
The steady-state value for b, now somewhat reduced below that 
in d, was again within 0.04% of the analytical value calculated 
using Eqs. (27)-(29). Computed curves using the linear logarith- 
mic approximation (as in b and d) were independent of the mag- 
nitude of the current. In contrast, curves c, e and f ,  calculated 
using the exact logarithmic term [Eq. (5)] were found to be de- 
pendent on current magnitude. In each of tbese cases | = 0.03. 
and curve e, with a low magnitude current parameter (L = 0.4 so 
that the AV(O)F/RT ~ 0.04 and the initial AV(0) ~ I mV), was 
very close to curve b. However, as It was increased to 8 (curve e, 
AV(0) ~ 20 mV) and 16 (curve f, with AV(0) ~ 40 mV) so both the 
amplitude and the rate of onset (and termination) of the transport 
number effects was increased. TI/2 however, only decreased from 
about 0.14 (curve b, L = 0.4) for very small currents to 0.13 
(curve e, It = 8), whereas for the very large currents (curve./', L = 
16) it decreased to 0.09. Curve f, especially, probably overesti- 
mates the rate of onset of time-dependent voltage changes since 
the permeant ion concentration is heavily depleted down to al- 
most zero throughout most of the invagination. Such radical con- 
centration depletion resulting from these high current magni- 
tudes would be likely to reduce both the ion transport number 
and conductance within the membrane of the invagination, a 
factor not allowed for in the analysis. 

ION CONCENTRATION CHANGES WITHIN SMALL 

RESTRICTED SPACE SURROUNDING A CELL 

If there is a small restricted diffusional space out- 
side a cell of width d (cm), where d ~ a, in which, 

for a reasonably long current pulse of magnitude i 
and duration t (seconds), diffusional equilibration 
generally may be assumed to take place within the 
space (provided t > d2/D) then, for a particular per- 
meant ion, the change in average concentrat ion AC 
within this restricted space would be given by 
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AC ~ ~" it 
z F A d  (45) 

with 

a, = tm -- t, (46) 

where ts is the transport number for the ion leaving 
the space, where A is again the surface area of the 
cell and the other terms are as previously defined. 
Again from Eq. (45) and an equation equivalent to 
Eq. (38), the magnitude of the voltage change 8V for 
a monovalent permeant ion is given by 

R Ta~ it 
8V  ~ F?AdCI ' (47) 

so that substituting for A 

an unstirred-layer of thickness 8 the solution is per- 
fectly stirred. The transport number and diffusion 
equations are then solved within this region. This 
has been done for a planar membrane system (e.g. 
Barry & Hope, 1969a; Barry, 1983; Barry & Dia- 
mond, 1984) and the maximum concentration 
change AC in the absence of any negative feedback 
effects, such as waterflow and solute backdiffusion, 
is given by 

6a., { 8a~ i 
AC ~ D z F  A D z F  (52) 

where a, is as defined by Eq. (46) although t, is now 
just the transport number within the solution and 
may differ from the value for an ion leaving a re- 
stricted space. Also { is the current density related 
to the total current i by 

R Ta, it 
8V  ~ F24~r2dC,, (48) 

and substituting for i from Eq. (40) 

8V RTa. ,G~t  
- ( 4 9 )  

2x V F2dC,  

where again Gm is the conductance in the absence of 
transport number effects. As in the previous case, 
these effects become significant when 8V/AV,  now 
given by Eq. (49) approaches or exceeds 1.0. Note 
that the magnitude of the effect is inversely propor- 
tional to the thickness of the diffusional space d. 
Again by comparing 8 V / A V  to/3, the relative magni- 
tude R2 of this transport number contribution [Eq. 
(49)] compared to that within membrane invagina- 
tions [Eq. (15)], is given by 

8 V/A V o~,,aDt 
R ~ -  ~ - 2de2 (50) 

As before, if t is long enough, so that R2 ~ 1, trans- 
port number effects within the restricted space will 
be dominant, whereas if it is short enough, so that 
R~ ~ I, the transport number effects within the 
membrane invaginations will predominate. Also R2/ 
Ri from Eqs. (44) and (50) is simply given by 

R2/R1 - 3atd (51) 

CONCENTRATION CHANGES IN UNST1RRED-LAYER 

SURROUNDING CELL 

i = AL (53) 

Again from Eq. (51) and an equation equivalent to 
Eq. (38), the magnitude of the voltage change 6V for 
a monovalent permeant ion is given by 

R T  8asi 
8V  - F2DCo~ (54) 

Using Eq. (40) to express i in terms of Gm and AV 

8 V R TGm a,8 
- -  ~ ( 5 5 )  
A V F2DCo 

Note that, in contrast to the previous case, the mag- 
nitude of this transport number contribution in- 
creases in proportion to the unstirred-layer thick- 
ness and, provided that t >> 82/D, is independent of 
time t. The relative magnitude R3 of such transport 
number effects in the external unstirred-layer rela- 
tive to those occurring within membrane invagina- 
tions will be given from Eqs. (52) and (15) by 

8 V/A V a~a8 
R3 - ~ - ~  - 2~ 2 (56) 

Again if R3 ~> 1 this external unstirred-layer 
transport number contribution will predominate, 
whereas the membrane invagination contribution 
will predominate if R3 ~ 1. 

It may also be readily seen that the relative con- 
tributions of a restricted space of thickness d and an 
unstirred-layer of thickness 8 will simply be given 
by 

This is the most difficult of the three cases to ana- 
lyze. Normally it is treated by assuming that beyond 

R3 d8 
R2 Dt  (57) 
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where it is assumed that as is the same in both 
cases, D is the diffusion coefficient of the appropri- 
ate ion within the unstirred layer and t is the dura- 
tion of the current pulse. 

Biological Relevance 

As mentioned earlier, other measurements in some 
cells do seem to strongly support the hypothesis 
that membrane invaginations play a significant role 
in causing slow voltage changes. In order to esti- 
mate the magnitude of  such transport number ef- 
fects in a particular cell, it is necessary to know the 
values of the invagination transport number param- 
eter ,8 [Eq. (15)] and the relative area 8A [Eq. (16)] 
occupied by the invaginations. The magnitude and 
time course of the effects can then be assessed from 
Figs. 3-7.  

Estimates of  7.5 for the ratio of  actual surface 
area, to that based on a noninvaginated sphere of 
the same diameter,  for the giant neurone of a nudi- 
branch mollusc (Mirolli & Talbott, 1972) and 6 for 
the ratio of  actual soma perimeter to that of a nonin- 
vaginated circle of the same diameter for Aplysia 
neurones,  together with the range of apparent ca- 
pacitances from about 3 to 56 /zF  �9 cm -e (cited in 
Andrews, 1977), suggest for many of  these cells, 
an order  of  magnitude of 20 or even greater for 8A. 
One of  the important parameters needed, to evalu- 
ate ,8, is Gin, the specific membrane conductance.  
However ,  because of  the presence of  these trans- 
port number  effects and the invariable presence of 
multiple time constants,  most estimates of R,,, are 
probably gross overestimates.  As a starting point 
therefore,  a value of  about 5 kf~ cm 2 (rather less 
than estimates such as those by Gorman & Mirolli, 
1972) will be chosen for the specific membrane re- 
sistance, giving a Gm of 2 • 10 -4 S ' cm 2. Many of 
these invaginations are extremely small in diameter 
(e.g. Plates 2 & 4 in Mirolli & Talbott,  1972) being of 
the order of 0.3 to 0.4/xm so that a = 0.2/xm (2 x 
10 -5 cm). For  a large 100 p,m radius cell it will be 
assumed that g ~ 50 /xm -=- 5 x 10 3 cm. Free- 
solution ion diffusion coefficients are --10 -5 cm 2 �9 
sec ~ and F = 96,500 Coulomb �9 mole -~ and RT/F 
= 25.3 mV at 20~ for a typical concentration [K] 
of 10 mM (10 5 moles �9 cm 3), /3 ~ 1.3, implying 
that for 8A = 10 that AVm(~)/AVm(O) ~ 1.3 from Fig. 
6. If there were any factors reducing the diffusion 
coefficient within these narrow invaginations then 
D might be much less. For  example,  decreasing D 
to 10 -6 cm 2 �9 sec -j would increase /3 to 13 and 
AV,,(~)/AV,,(O) to about 2.7. Similarly if [K] within 
the invaginations were also less because of  active 
transport  pumping, ,8 could increase still further. In 
fact, increasing Gm or e, or decreasing a, C,, or D has 
the effect of increasing ,8. In addition, increasing the 

value of 6A will result in an even greater increase in 
the magnitude of these slow voltage changes. If. 
however,  the true values of the above parameters 
for a particular cell are such that/3 ~ 1, then trans- 
port number effects in membrane invaginations can 
be assumed to be negligible. When using this analy- 
sis it should also be remembered that the analytical 
predictions have been made on the assumption that 
the invaginations were of a uniform size and distri- 
bution and that the concentrat ion changes remained 
small enough so that ln(l + AC/C) ~ AC/C. As illus- 
trated in Fig. 7, violation of this condition will in- 
crease the magnitude and rate of onset of slow volt- 
age changes for hyperpolarizing current pulses. 
Likewise, the addition of an access resistance re- 
gion at the mouth of any of the invaginations, will 
also increase the magnitude of these transport num- 
ber effects. Probably of even more significance, is 
the presence of a further unstirred layer or region of 
restricted diffusion surrounding the cell beyond the 
invaginations, which will also tend to increase the 
magnitude of these effects. 

Using the above cell dimensions with D = 10 _5 
cm 2 �9 sec -j,  other transport number contributions 
can also be estimated. From Eq. (41) for such a 100- 
#m radius cell, slow voltage changes due to average 
concentrat ion changes within the cell interior can 
be estimated. In this case 8V/AV - 8 • I0 -4 /' as- 
suming that, as expected with KCI electrodes, c~, - 
0.5. This implies that, for such a cell. significant 
slow voltage changes will only occur for times t >> I 
x 103 sec, Comparing these changes, with those 
produced within membrane invaginations, indicates 
that Rt = (SV/AV)//3 ~ 0.6 • 10 -3 t so that they 
would only be dominant for t >> 2000. If a was 10 
times bigger (2/xm), f 5 times smaller (10/ ,m) and 
G,,, 10 times smaller, these effects would now be 
dominant for t >> 1 sec. 

For  some cells there is a restricted diffusion 
space surrounding the cell. In the squid axon there 
is a 30-nm (0.03 /,m) space between the axon and 
enclosing Schwann cells (Frankenheuser & 
Hodgkin, 1956), whereas in the G cell of  the nudi- 
branch mollusc (Mirolli & Talbott,  1972) there is 
only a 20-nm (0.02/xm) space between the large G 
cell and its surrounding glial cells. Using this latter 
value and 2 • 10 -4 S �9 cm 2 for G,,, implies from Eq. 
(49) that 6V/AV ~ 2.6 t, suggesting large slow volt- 
age changes for times ~>1 sec. Comparing this with 
the predictions of the invaginated membrane trans- 
port number effects for f = 50/xm, a = 0.2/zm, D = 
10 _5 cm 2 �9 sec -I results in R~ = (8V/AV)//3 = 2t im- 
plying that both contributions are comparable for 
times -1  sec. Of course, with both invaginations 
and a restricted diffusion space occurring together, 
the boundary condition Eq. (A5) would have to be 
modified, and the actual concentrat ion changes in 
the invaginations would be greatly magnified. 
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For the large bursting cells of Aplysia, how- 
ever, there is apparently no morphological evidence 
for such a well-defined consistent barrier around the 
cells (Eaton, 1972). Neher and Lux (1973) have in- 
ferred a rather less well-defined diffusion barrier 
about 20 txm from the cell. In such a case, from Eq. 
(49), 8V/AV ~ 2.6 t. This would become significant 
for times >0.4 sec (equilibration time within the 
space would be >>0.4 sec). 

If the effects of a 0.02/xm restricted diffusion 
space were compared with an unstirred layer of 200 
/xm surrounding the cell (assuming % is the same in 
both cases) then the ratio of the two possible contri- 
butions R3/R 2 would be d3/(Dt) = 0.004/t. For times 
>4 msec the restricted diffusion case would domi- 
nate and in fact, for times less than this, the unstir- 
red-layer case would not have reached a steady 
state. For a 200-/xm unstirred layer compared to a 
20-/xm sized restricted diffusion space R3/R2 = 4/t 
and hence for times >>4 sec the restricted diffusion 
case would predominate. For times much less than 
this the ion would not have 'equilibrated' across the 
restricted diffusion space and neither would the 
profile in the unstirred-layer case have quite 
reached a steady state. 

If we consider the role of dendrites in producing 
slow potential changes or in causing a time-depen- 
dent decrease in amplitude of some currents, we 
can still apply exactly the same analysis and param- 
eters except that now 8A and/3 refer to the relative 
area and properties of the dendrites. For example, 
such effects may explain the apparent inactivation 
of some calcium currents. It has been estimated that 

- 150/xm, a - 3/xm for hippocampal pyramidal 
neurones in guinea pig (Johnston & Brown, 1983), 
whereas measurements of calcium conductances in 
chromaffin cells indicate G m -  4 x l0 -4 S " cm 2 
[i.e. 2.4 k[] - cm 2 from a peak current of 0.22 pA �9 
/xm -2 in a 1 mM [Ca] solution and a driving force of 
52 mV, (Fenwick, Marty & Neher, 1982, Table 2)]. 
Assuming an internal calcium concentration of 10 7 
M (10 -4 moles �9 cm -3 e.g. l0 7 to 10 -~ M; Kostyuk, 
1981) and Dca - 10 -~ cm 2 " sec -1 this implies that/3 
will be extremely large, about 1.6 • 105. Provided 
6A is of reasonable magnitude, this implies very 
significant changes in [Ca]; within the dendrites. It 
should be remembered that, because of the simple 
boundary condition at the mouth of the invagina- 
tions or dendrites, this is particularly likely to un- 
derestimate the magnitude of the transport number 
effects in the dendrites. This could reduce the cal- 
cium currents by reducing the driving force on cal- 
cium, as in the invagination transport number anal- 
ysis discussed in this paper, in which the driving 
force on potassium is reduced, and the magnitude of 
the effect could then be estimated from values of 6A 
and/3. Such a slow, time-dependent decrease in cal- 

cium current has indeed been observed and as- 
sumed to be an inactivating property of the mem- 
brane itself. On the other hand, there seems to be 
some evidence that there might be a direct effect of 
[Ca]i causing inactivation of the current (e.g. Tsien, 
1983). In such a case, this could be simply modeled 
by appropriately modifying Eqs. (5) and (7). Other- 
wise the basic principles outlined in this paper 
would still apply. As expected for transport number 
effects in either case, Fenwick et al. (1982) showed 
that buffering [Ca]i with EGTA resulted in a much 
smaller decline in calcium current with time than in 
its absence. 

Discussion 

In this paper it has been shown that the presence of 
membrane invaginations in a cell can give rise to 
slow changes in potential during the passage of cur- 
rent across the cell membrane, resulting from differ- 
ences in ion transport numbers, between the cell 
membrane and the solution within the invagination, 
which then give rise to depletion (or enhancement) 
of the major permeant ion species within the invagi- 
nations. Both analytical and numerical solutions 
have been given and predictions compared. It has 
been shown that in the case of large currents and 
potentials the predictions of the analytical solutions 
will underestimate the magnitudes and rates of on- 
set of the voltag e responses. In order to estimate 
the magnitude of these transport number effects in a 
given situation it is only necessary to evaluate two 
nondimensional parameters: the invagination trans- 
port number parameter (/3 = 2GmRT~2/(aF2CoD)) 
from Eq. (15) and the relative area occupied by the 
invaginations 8,4(= 21rnaf) given by Eq. (16). 
Knowing these two parameters, the magnitude and 
time course in nondimensional units of the slow po- 
tential changes can be estimated from the equation 
and figures given in this paper and then the time 
course converted to real units by multiplying nondi- 
mensional times by (fZ/D), as in Eq. (13). The fact 
that/3 is inversely proportional to Co immediately 
suggests, at least in principle, one way of reducing 
the magnitude of these transport number effects is 
simply to increase the bathing solution concentra- 
tion of that ion. 

It has also been shown in the previous section 
that there are various other possible transport num- 
ber contributions that can result in slow potential 
changes following the passage of current across a 
cell membrane. These are changes in the concentra- 
tion of the major permeant ion which could occur as 
(1) changes in the average concentration of that ion 
within the interior of a cell; (2) changes in the aver- 
age concentration of that ion within a small re- 
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stricted space surrounding a cell or (3) changes in 
the interfacial concentration of that ion in the un- 
stirred-layer surrounding a cell. In that previous 
section it was also shown how the relative magni- 
tude of such other transport number contributions 
could be assessed from Eqs. (44), (50) and (56). 

If the relative concentration changes in mem- 
brane invaginations are small, so that Eq. (5) can be 
linearized to Eq. (7), the predictions will be identi- 
cal for depletion and enhancement of ions. How- 
ever, if they are not, then the effects of depletion 
will be much more significant than those resulting 
from enhancement. 

From order-of-magnitude estimates of morpho- 
logical and other data for some neuronal cells it is 
suggested that 8.4 > 10 and /3 - 1.3 implying 
AVm(~)/AV, n(O) -- 1.3. If, however, more correct val- 
ues of some of those factors used to estimate/3 were 
to result in its value increasing, then the magnitude 
of the predicted slow potential changes would be 
much greater. For example, if the diffusion coeffi- 
cient within the membrane invaginations were to be 
decreased to 10 -6 cm 2 - s e c  -!  this would increase/3 
to 13 and AVm(OO)/AV,,(O) to 2.7. Also, including the 
effect of any additional unstirred-layer or restricted 
diffusion space beyond the cells would greatly in- 
crease the magnitude of the membrane invagination 
transport effect component and of course it would 
also contribute an additional component itself. For 
the parameters and cell dimensions considered, 
concentration changes within the cell interior were 
relatively smaller than in the invaginated regions for 
all but extremely long times (~ 1000 sec). However, 
for a 20-nm restricted diffusion space for some large 
cells, which are surrounded by glial cells, it was 
estimated that this space would result in large slow 
potential changes (SV/AV ~ 2.6 t) for times t ~> 1 
sec. The additional presence of membrane invagina- 
tions would further increase the magnitude of these 
slow voltage changes. In order to make more accu- 
rate estimates of such transport number effects in a 
particular cell, more detailed and reliable morpho- 
logical electrophysiological data is required. 

It has also been suggested that dendrites are 
equivalent to reversed invaginations, and that the 
same analysis can equally apply to them, provided 
that 8A and /3 now refer to the properties of the 
dendrites and that the boundary condition at the 
mouth of the dendrites is still satisfied and is not 
significantly affected by the finite dimensions of the 
interior of the cell. As we have seen, because of the 
low value of [Ca]/and the length of the dendrites,/3 
will be very large. These transport number effects, 
therefore, may well help to explain some aspects of 
the apparent inactivation of calcium currents some- 
times observed in cells with a large number of den- 
drites. An obvious experimental technique to re- 

duce the magnitude of the dendrite transport 
number effect would be to internally buffer internal 
calcium with a chelating agent such as EGTA as 
was done by Fenwick et al. (1982). 

The significance of appreciating all these trans- 
port number effects is that, if they are not fully 
taken into account, such slow, time-dependent po- 
tential changes or the reduction of ionic current dur- 
ing voltage-clamp experiments could be mistaken 
for time-dependent changes in membrane permea- 
bility, which could lead to very erroneous conclu- 
sions about factors controlling ion permeability. In 
addition, being aware of their magnitude and role in 
a particular situation will result in the ability to 
modify this role in some circumstances and to cor- 
rect for it in others in order to evaluate if there are 
indeed any residual true permeability changes inde- 
pendent of transport number effects. 
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Appendix A 

TIME-DEPENDENT SOLUTION OF THE EQUATIONS 

DESCRIBING THE TRANSPORT NUMBER EFFECTS 

IN INVAGINATED MEMBRANES (WITH 1NFINITE 

LUMINAL CONDUCTANCE) 

Using the same symbol notation as in the text, the differential 
equations [Eqs. (2)-(9)] and boundary conditions, outlined there, 
will now be solved. From Eqs. (4) and (7), writing V~ for AV,., 

OC 2G,,, [ RT RTC 1 02C 
8t - aF V,, + F -~,,,J + D 8x---i_. (A1) 

Taking Laplace transform of both sides of Eq. (AI) it becomes: 

D ~  ~ ( p + O ~ t = - C , ,  + 

wheree(x) = f~7 e-"'C(x,t)dt with a similar definition for ~',,,, p is 

the Laplacian operator, which must be sufficiently large so that 
the integral converges, and 

0 ~ D/• 2 (A3) 

=~ F/RT. (A4) 

The boundary equations are now given at x - 0 by 

= C,/p (A5) 

and at x ( by 

. =  = 0 .  ( A 6 )  

The full solution to Eq. (A2) may be shown to be given by 

C = Co(p) + Kle qx + K2e-qx (A7) 

~,,(p) =- (A8) 
(p + 0t?) 

q -= [(p + Ol3)/D]t'z (Ag) 

and K~ and K2 are lhe two constants of integration, which may be 
evaluated from the boundary condition to give 

[Co ] c o s h q ( x -  (f) 
C = Co(p) + P - C',,(p) cosh q(~) (AI0) 

"Faking the Laplace transforms also of Eqs. (7) and (9) we obtain 

(All) 

Substituting forC from Eq. (AI0) into Eq. (A111, multiplying by 

where 
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n, the number of invaginations per cm 2 of  surface membrane,  and 
simplifying we obtain 

- [ p 013 tanh(qe)] 
nio = - ~A �9 G,,V,, ( p - 7 - 7 ~  + (p + Off) q~e J (AI2) 

where 8A, representing the relative area of  the invaginated mem- 
brane region, is again given by 

8A = 2rrnaf .  (AI3) 

The Laplace transform of  Eq. (10) is 

I _ 

i, = nio - V m G m  (A14) 

and hence substituting for nio from Eq. (A12) in Eq. (AI4) and 
expressing in terms of  "gin w e  obtain 

= - i , R , d p  + 013) tanh(q/?))]" (AI5) 
V" [p(1 + 8 A ) +  013 (1 + 8A ~ d 

For  a constant  current pulse of  amplitude 1 

it = I/p.  (A16) 

Substituting for i-t from Eq. (AI6) into Eq. (A15) and using the 
Laplace inversion theorem (e.g. Jaeger, 1961) we obtain 

Vm - 
I B  m ( y  +ira 

2rri , y - i~  

(p + 013)eP'dp 
{ / ~^ tanh ql~ ] 

P , p  + 013 + 8A , o  + 
L \ -  

(AI7) 

where again i = ~ -  and where 8 is chosen such that all the 
poles lie to the left of  the line y + i~, 3' - i~. Making the 
following transformation 

dh 
h = p + Off dt * 2ix 

dp  = dX qs = (h/O) t/2 

1R m (~/' + i~ 

V~ - 27ri .~ ' - i~  

Xe,X - o~tdh 

tanh qe 

(AI8) 

(AI9) 

where y '  is chosen in Eq. (A19) to fulfill the same criterion as for 
3' in Eq. (A17). Evaluating this integral is formally equivalent to 
evaluating 2~ri times the sums of  the residues of  the poles of this 
integrand. 

There are 3 possible sets of poles. 
(i) When ,k = Off, the residue is simply 

l + 8A(tanh ~J-fl)/~ffi" 
(A20) 

(ii) There is a pole for h = 0oL 2 where a 2 < ]3 which occurs as the 
root of 

o2+ AE-2+ ( o ')1=0 (A21) 

as already given in Eq. (18) in the text. 
Using the residue formula (MacLachlan, 1953; p. 54) it may 

be shown that if there is a pole at X = a and the integrand of the 
function requiring transformation is of the form N(X)/D(X) then, 
provided N(a)  is nonzero,  the residue is N(a) /D ' (a )  where D'(a)  

is the differential of  D(a). These conditions are met in Eq. (A19) 
and hence the residue becomes 

o~2e~2 j3mt 

(a 2 - f l)[Zl(a) + Z:(a)  tanh a] 
(A22) 

where 

Zt(a) ~ 1 + 8A + -  

and 

6A ' f i  (A23) 
2a2 

a 3 A  � 9  
Z2(a) =- ~ (1 + 3A) - ~ (1 + a 2) (A24) 

as in Eqs. (19) and (20) in the text. 
(iii) Similarly there is an infinite number of poles given by 
h = 0a~,,. These poles occur as the roots of  

(,anom)] 
O:m + 3A a;. fl \ a,, - 1 = 0 (A25) 

as in Eq. (22) in the text. 
As before in (ii) the residues of these poles may be evalu- 

ated using the residue formula as 

(a~, + fi)[Zl(iam) + iZ._(iam)tan a.,] 

where 

Zl(ia,,) = 1 + 3A - - -  
6A "/3 

2%, 

and 

(A26) 

(A27) 

a,~ 3A . fi 
iZz(ia,,) = ~ -  (1 + 6A) + - -  (I - a~,,) 

2a~,, 
(A28) 

as in Eqs.  (23) and (24) in the text. 
If we add 27ri times the sums of  the residues given by Eqs. 

(A20), (A22) and (A26) along with their subsidiary equations this 
gives the solution to the integral in Eq. (AI9). If we further 
redefine time t in terms of  the nondimensional time parameter T' 
by 

T' = Ot = Dt / e  2 (A29) 

the solution to Eq. (AI5) in ordinary space becomes: 

AV(T ' )  V 
(1 + 8A) [Al(fi) + Az(a,fi)e -I"2-~lr' av(o) 

+ ~ A2(iam,13)e -t"~"+~)v] 
ra=l 

(A30) 

where 
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I 
A l ( f i )  = 

1 + 3A �9 (tanh xff i ) / '@ 
O~ 2 

a2(a,/3) = (a 2 _ /3)[Zl(a) + Z2(a) tanh a] 

aT, 
A2(iam,/3)  = (a~n + f l ) [Z f f ia ,~)  + iZ2(iam) tan am] 

aa ./3 
Z x ( a ) ~  1 + 3 A  + 2a~_ 

(A31) 

(A32) 

(A33) 

(A34) 

a 8A .]3 
Z2(a) = ~(1  + 8A) - ~ ( 1  + a 2) (A35) 

where i -= x/Z1 - and Z l ( i a m )  and Z,_(ia,,) are simply obtained by 
substituting ia . ,  for a in Eqs. (A34) and (A35), Eqs. (A29)-(A35) 
are the same as Eqs. (11)-(14) and (17)-(24) in the text. 

Appendix B 

STEADY-STATE SOLUTION OF THE EQUATIONS 

DESCRIBING TRANSPORT N U M B E R  EFFECTS IN 

INVAGINATED MEMBRANES (WITH FINITE 

LUMINAL CONDUCTIVITY) 

Further simplifying the equations in the text and converting them 
completely to nondimensional form the full time-dimensional 
equations become 

OC' 02C ' 
aT '  - /3IK + OX 2 (BI) 

IK = -- (e,~ e In C) = FiK/RTGr~  (B2) 

d e  / 3 .  0 I ( X )  (B3) 
a 2 = -  a ~ ,  �9 

1 d l  
IK = - 8A- '~  (B4) 

1, = Io - ~m (B5) 

where 

C '  = C /Co  X - x/f .  (B6) 

e = F V / R T  e m =  F V m / R T  (B7) 

nFio  n F i ( x )  
I,, - 1 0 0  - ( B S )  

G m R T  G m R T  

Fi t  D F 2 C o  
L - O - ( B 9 )  

G m R  T R T G L  

and where/3 and 8A are as previously defined by Eqs. (15) and 
(16). 

In the steady state Eq. (BI) becomes 

d 2 C  , 
dX 2 - /31K. (B10) 

Using Eq. (B10) together with Eqs. (B3) and (B4) it follows that 

d2e  d 2 C  ' 
- O - -  (BI1) 

dX 2 dX 2' 

Integrating twice and using the two bounda..ry conditions that 
whenX 0, C ' =  l , e = 0 a n d w h e n X =  l , d C ' / d X = 0 ,  de /dX= 
0 the simple relationship between potential and concentration 
within the invaginations is obtained 

e = O(C' - I). (B12) 

Linearizing the logarithm term in Eq. (B2) and substituting for e 
from Eq. (BI2) the equation becomes 

IK = - [ e . ,  + ( O  + 1) - C ' ( O  + 1)] .  (BI3) 

From Eqs. (Bl0) and (B13) the concentration differential equa- 
tion becomes 

d 2 C  ' 

dX 2 - /3[era + ( O  + 1)] + 13(O + I ) C ' .  (B14) 

It may readily be shown that the general solution of this 
differential equation is 

C' = A~e vFx + A2e v~yx + [1 + em/(O + 1)] (B15) 

where A~ and A2 are constants of integration and fl' is given by 

/3' = /3(O + 1). (B16) 

Using the boundary conditions for X = 0, (C' = l) and X = 1, 
( d C ' / d X  = 0) the solution becomes: 

c o s h [ ~ f i ; ( X -  1)]] 
~ m  1 - -  " , 

( C '  - 13 (0 + 1) c ~ s h ~  
(B17) 

From Eqs. (BI2) and (B17) together with Eqs. (B3) and (B16) 

3A s inh[X/~;(X-  1)] 

i(x) = ~ ~,,, cosh 
(BI8) 

Hence 

8A 
Io = I(O) = - ~ em tanh "@' .  (B19) 

Vt3 '  

From Eqs. (B5) and (B19) in the steady state 

Vm e,n(l + 8A) (1 + 8A) 
- i R ~  = - " 1 ~  - 1 + 8 a  (tanh "@;)/X/~ 7" (B20) 

Now even in the absence of transport number effects, a finite 
value of O results in a drop in voltage down the invagination so 
that the initial value of V m / i R *  is no longer 1.0. This initial 
value can be readily obtained by solving Eqs. (B2)-(B4) with C = 
1, so that Eq. (g2) becomes 

IK - - (era - e ) .  (B21) 
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From Eqs.  (B21), (B3) and (B4) the differential equation be- 
comes  

d 2 ~  

d X  z - / 3 0 ( t ~  m - -  e ) .  

Following exact ly  the same procedure  as for the solution of Eq. 
(B14), with e = 0 when  X = 0 and d e / d X  = 0 when  X = 1, the 
solution becomes  

Io - 8 A  �9 e , , ,  tanh @ .  ",/y6 

Hence  from Eq. (B5) 

em 1 

It 1 + 3A (tanh x / ~ ) / X / ~  

so that initially 

V~ e,,, 1 + (3A 
iR*  - It (1 + 8A) = 1 + 8A (tanh X / ~ ) / x f ~  (B25) 

(B22) 
and hence from Eqs.  (B20) and (B25) 

AV(:~) 1 + 6A (tanh " @ O ) / X / ~  
= (B26) 

AV(0) 1 + ~A (tanh "x /y ) /x /~  7 

For small values of  O, /3' ~ /3 and Eq. (B20) becomes 
equivalent  to Eq. (25) in the text. Even  larger values of  O only 

(B23) serve to increase the effective magni tude of the transport  number  
parameter .  For typical physiological solutions (D = 1.5 x 10 5 
cm . 2. s e c - t  C,, = 5 x 10 .6 mol �9 cm 3 Gc = 10 -z S �9 cm -~) it 
may  be calculated from Eq. (B9) that O = 0.03. Thus  this repre- 
sents  a 3% correction to ft. As may be noticed from that equation,  

(B24) O is quite independent  of  invagination geometry  al though 0/3 is 
not [see  Eq. (29b)]. 

Appendix C 

N U M E R I C A L  A N A L Y S I S  OF T R A N S P O R T  N U M B E R  

E Q U A T I O N S  FOR AN I N V A G I N A T E D  M E M B R A N E  

Dropping the prime from C'  and T', the equat ions in Appendix  B 
can be readily rewri t ten in a form suitable for numerical  analysis.  
Cons ider  the invaginat ions to be divided into NX elements  of  
th ickness  DX. 

Given a value of  total current  IT an initial est imate of  the 
membrane  potential pa ramete r  EM is obtained from 

EM = - IT/(1 + DELA)  (CI) 

where EM,  IT and D E L A  are equivalent  to era, I, and 8A in Eqs. 
(B7)-(B9) in Appendix  B and Eq. (16) in text.  Using this initial 
value of  EM, the currents  and potentials down the Nth element  
of  the invaginat ions will be given (writing in Fortran language 
style) f rom Eqs.  (B2)-(B5) by 

DE(N) = - B E T A * T H E T A * I ( N  - I )*DX/DELA (C2) 

E(N) = E(N - 1) + DE(N).  (C3a) 

For  the first and Nth  e lements ,  

E(I) = DE(l)/2 

IK(N) = - {EM - E(N) - LNfC(N)]} 

DI(N) = - I K ( N ) * D E L A * D X  

I(N) = I(N - 1) + DI(N) 

(C3b) 

(C4) 

(C5) 

(C6) 

where 

DX = 1.0/Nx.  (c7) 

BETA,  T H E T A ,  IK and E are the same as ~ ,O,  tK and e in 
Appendix  B and I(0) = Io, E(0) = 0 and * represents  multiplica- 
tion. LN[C(N)] is either log,.[C(N)], or  C(N) - 1 for the linear 

approximation,  C(N) being the relative ionic concentrat ion 
within the Nth  element .  If the correct value of e,,, were to be 
chosen ,  the current ,  I(NX), at the closed end of the invagination 
(X = 1), should be zero. A simple, very rapidly converging. 
iterative correction was obtained by changing EM in a way 
which was equivalent  to reducing the current  entering the invagi- 
nation by I(NX), i.e. 

EM = EM - I(NX)/(1 + DELA) .  (C8) 

Using this current  the concentrat ion change of the first 
(closest to the surface),  Nth and last element will be given by 

DC(1) = - BETA*IK( I )  

+ [C(2) + 2 - 3*C(I)]/(DX*DX) (C9) 

DC(N) = - BETA*IK(N)  

+ [C(N + 1) + C(N - 1) - 2*C(N)]/(DX*DX) (CI0) 

DC(NX) = - BETA*IK(NX)  

+ [C(NX - l) - C(NX)]/(DX*DX) (CI1) 

and for each element  

C(N) = C(N) + DC(N)*DT (C 12) 

where  DT is the time step. 
The actual computa t ions  were done in double  precision on a 

PDP-11/34 compute r  using the Fortran IV language. For reason- 
able accuracy  either 50 or 100 e lements  were used with a time 
step of  0.0002 or 0.00005. Although,  simple numerical  integration 
of  the above equat ions  really converged remarkably well, the 
four th-order  Runge-Kut t a  technique was used to further  increase 
computat ional  accuracy  (for fur ther  details s e e  e . g . p .  270 of 
Barry & Adrian,  1973). Using the linear log approximation and 
zero luminal res is tance these  computed  values were found to be 
within 0.03 and 0.01% of the analytical values for 50 and 100 
elements  with/3 = 10 and 8A = 10. 


